810. The Structure of Two N-oxides of 3,5,6-Triphenyl-1,2,4-Triazine: Evidence from Dipole Moments.

By C. M. Atkinson, D. A. Ibbitson, F. J. Rice, and J. P. B. Sandall.
N-Oxidation of 3,5,6-triphenyl-1,2,4-triazine gives two N-oxides to which structures have been assigned, as $\mathrm{N}-1$ and $\mathrm{N}-2$ oxides, on the basis of measurements and deductions from related N-heterocycles.
During a general study of $1,2,4$-triazines, it was found that N-oxidation of $3,5,6$-triphenyl-$1,2,4$-triazine yielded a mixture of two isomers. Strong evidence for the site of N-oxidation in these isomers is provided by a study of the dipole moments, measured in benzene, of the compounds listed in Table 1.

Table 1.
Polarisation data for benzene solutions at 25°.

Compound	$10^{3} \alpha$	$10^{2} \nu$	$P_{2 \infty}$ (c.c.)	μ (D)
Pyridazine	23,303	9	$349 \cdot 9$	$4 \cdot 14$
2,5-Dimethylpyrazine-1-oxide	2,854	21	$61 \cdot 7$	$1 \cdot 74$
4,6-Dimethylpyrimidine	7,024	-5	$144 \cdot 0$	$2 \cdot 65$
4,6-Dimethylpyrimidine-1-oxide	13,253	23	304.2	3.86
3,5,6-Triphenyl-1,2,4-triazine	3,789	40	197.2	3-10
3-p-Chlorophenyl-5,6-diphenyl-1,2,4-triazine	5,335	48	$313 \cdot 3$	$3 \cdot 91$
3-p-Bromophenyl-5,6-diphenyl-1,2,4-triazine	4,802	46	317.0	$3 \cdot 94$
3,5,6-Triphenyl-1,2,4-triazine- N -oxide				
Compound 1	5,013	48	$277 \cdot 0$	$3 \cdot 68$
Compound 2	6,112	55	$339 \cdot 9$	$4 \cdot 08$

Because the pyridine ring is π-electron-deficient compared to the benzene ring, it is to be expected that corresponding substituent-group moments will differ. From the moments of pyridine ($2 \cdot 22 \mathrm{D}$), ${ }^{1} 4$-methylpyridine $(2 \cdot 61 \mathrm{D}),{ }^{1}$ and 4 -chloropyridine $(0 \cdot 78 \mathrm{D}),{ }^{1}$ the moments of the methyl and chloro groups are calculated to be 0.39 and $1 \cdot 44 \mathrm{D}$, respectively, whereas the moments of toluene and chlorobenzene are 0.37 and 1.58 D .

Using these group moments and the moments of 3-methylpyridazine (recalculated as $4 \cdot 15$ D from Smith's formula) ${ }^{2}$ and 3 -methyl-6-chloropyridazine (4.51D), ${ }^{2}$ two values of the pyridazine-ring moment ($4 \cdot 13,4 \cdot 12 \mathrm{D}$), each bisecting the two nitrogen atoms were calculated vectorially. The excellent agreement with the observed value for pyridazine (4•14D) implies that interactions between the nitrogen atoms and the ortho-chloro- and ortho-methyl substituents do not affect the moment of pyridazine.

From the moments of pyridazine ($4 \cdot 14 \mathrm{D}$) and pyridazine-l-oxide ($5 \cdot 21 \mathrm{D}$), ${ }^{3}$ the $\mathrm{N}-\mathrm{O}$ group moment was computed vectorially, and found to be $1 \cdot 20 \mathrm{D}$. Similarly, using the moments of 3 -methylpyridazine-1-oxide (5•23D), ${ }^{2} 3$-methylpyridazine-2-oxide (5•23D), ${ }^{2}$ and 3 -methyl-6-chloropyridazine-2-oxide (5•29D), ${ }^{2} \mathrm{~N}-\mathrm{O}$ group moments were calculated to be $1 \cdot 16,1 \cdot 26$, and $1 \cdot 18 \mathrm{D}$, respectively. Thus the presence of adjacent methyl and chloro groups does not affect greatly the $\mathrm{N}-\mathrm{O}$ group moments, and it was considered reasonable to assume a mean value of $1 \cdot 20 \mathrm{D}$ for the $\mathrm{N}-\mathrm{O}$ group moment when the oxygen atom is bonded to a nitrogen atom adjacent to a second nitrogen atom.

Values of the $\mathrm{N}-\mathrm{O}$ group moments in pyridine-1-oxide, pyrazine-1-oxide, and pyrimidine-l-oxide are also necessary to solve the present problem. From the moments of pyridine (2.22D) and pyridine-1-oxide (4.24D), ${ }^{1}$ the $\mathrm{N}-\mathrm{O}$ group moment was calculated to be $2 \cdot 02 \mathrm{D}$. Since 2,5-dimethylpyrazine is non-polar, the N-O group moment in 2,5-dimethylpyrazine1 -oxide was taken to be the observed moment of this compound (1.74D). The $\mathrm{N}-\mathrm{O}$ group moment in 4,6-dimethylpyrimidine-1-oxide was calculated vectorially to be $1 \cdot 78 \mathrm{D}$, assuming the moment of 4,6 -dimethylpyrimidine $(2 \cdot 65 \mathrm{D})$ acting at 60° to the direction of the $\mathrm{N}-\mathrm{O}$ bond, and the moment of 4,6-dimethylpyrimidine-1-oxide ($3 \cdot 86 \mathrm{D}$).

Essential N-O bond moments are illustrated in the Figure, those of 1,2,4-triazine-Noxides being calculated additively from those of the diazines.

The angle, α, which the moment of $3,5,6$-triphenyl-1,2,4-triazine ($3 \cdot 10 \mathrm{D}$) makes with the $N_{1}-N_{4}$ axis was calculated by Marsden and Sutton's method ${ }^{4}$ from the moments of

(i) $\mu_{\mathrm{NO}}=0.92=1.20-(2.02-1.74)$
(ii) $\mu_{\text {NO }}=0.96=1.20-(2.02-1.78)$
(iii) $\mu_{\text {NO }}=1.50=1.78-(2.02-1.74)$

3 - p-chlorophenyl-5,6-diphenyl-1,2,4-triazine (3.91D) and chlorobenzene (1-58D) ($\alpha=$ $48^{\circ} 57^{\prime}$). Using the moments of $3-p$-bromophenyl-5,6-diphenyl-1,2,4-triazine (3.94D) and bromobenzene ($1 \cdot 56 \mathrm{D}$), the value of $\alpha\left(51^{\circ} 6^{\prime}\right)$ was found to be in good agreement. Taking a

[^0]mean value of 50°, and using the $\mathrm{N}-\mathrm{O}$ group moments deduced for the triazines (Figure), the moments of the $1-, 2$-, 4 -oxide isomers of $3,5,6$-triphenyl- $1,2,4$-triazine were calculated to be $3 \cdot 76,4 \cdot 05$, and $2 \cdot 43 \mathrm{D}$, respectively. Comparing these values with those observed for the two N-oxides (compound 1, m. p. $207^{\circ}, \mu=3.68$ D; compound 2 , m. p. $194^{\circ}, \mu=4.08 \mathrm{D}$) leads to the conclusion that N-oxidation in compound 1 occurs at the N_{1} nitrogen atom, and in compound 2 at the N_{2} nitrogen atom.

We hope to discuss the relationship of the site of N-oxidation in this series with that of quaternisation. ${ }^{5}$

Experimental

Materials.-Benzene and cyclohexane, dried over sodium wire, were distilled, and the
 was distilled, fraction b. p. $76 \cdot 8^{\circ} / 760 \mathrm{~mm}$. being stored over phosphorus pentoxide for 24 hr . before use. Pyridazine picrate, m. p. $168-169^{\circ}$, was recrystallised from alcohol and cleaved in alkaline solution. The pyridazine was distilled, fraction b. p. $207-208^{\circ}$ being collected. 2,5-Dimethylpyrazine-1-oxide, m. p. 107-108 ${ }^{\circ}$, prepared from commercial 2,5 -dimethylpyrazine by Klein and Berkowitz's ${ }^{6}$ method was repeatedly vacuum-sublimed. The dipole moment was determined immediately after purification. Commercial 4,6-dimethylpyrimidine was distilled, the fraction b. p. $154-155^{\circ} / 760 \mathrm{~mm}$. being collected. 4,6-Dimethylpyrimidine1 -oxide, m. p. 112- 113°, prepared from 4,6-dimethylpyrimidine by Hunt, McOmie, and Sayer's ${ }^{7}$ method, was recrystallised from petroleum ether (b. p. 60- 80°).

3,5,6-Triphenyl-1,2,4-triazine-N-oxides (with H. D. Cossey). The triazine (5 g .) was heated under reflux at 80° with acetic acid (75 ml .) and 30% hydrogen peroxide (25 ml .) for $2 \frac{1}{2} \mathrm{hr}$. The pale yellow needles ($2 \cdot 1 \mathrm{~g}$.), m. p. 119-204 ${ }^{\circ}$, which separated were collected cold and recrystallised from ethyl acetate to give pale yellow needles of a mono-N-oxide ($1.75 \mathrm{~g} ., 33 \%$), m. p. $207-208^{\circ}$ (Found: C, 77.2 ; $\mathrm{H}, 4.6 ; \mathrm{N}, 12.9$. Calc. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 77.5 ; \mathrm{H}, 4.65$; N, $13 \cdot 0 \%$). The mixture was poured into water, and the yellow oily solid ($1 \cdot 25 \mathrm{~g}$.) which separated was washed with water and dried. Recrystallisation from ethanol gave yellow needles of a mono- N-oxide (0.41 g ., 8%), m. p. $192-194^{\circ}$ (Found: C, 77.1 ; H, 4.4 ; N, 12.9. Calc. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ as above.)

The remaining compounds were prepared as described previously. ${ }^{8}$
Dipole Moments.-Dielectric constants and refractive indices of solutions of graded concentrations in benzene were determined for each compound. All measurements were made at 25°.

Dielectric constants, accurate to ± 0.0001, were measured with a heterodyne-beat dipolemeter (type DM 01, manufactured by Wissenschaftlich-Technische Werkstätten G.m.b.H.) with internal thermostatic control. The dielectric cell, type DFL1, of 20 ml . capacity, was provided with goldcoated interior plates and thermostat. The linear condenser was calibrated from measurements with benzene ($\varepsilon=2 \cdot 2725$), cyclohexane ($\varepsilon=2 \cdot 0139$), and carbon tetrachloride ($\varepsilon=2 \cdot 2274$).

Refractive indices were measured with an Abbé refractometer of high accuracy.
The results are summarised in Table 2, where the symbols have their usual significance.
The molar orientation polarisation at infinite dilution, $P_{2 \infty}$, of each compound was calculated from the equation:

$$
P_{2 \infty}=3 M_{2} v_{1}\left\{\alpha /\left(\varepsilon_{1}+2\right)^{2}-v /\left(n_{1}^{2}+2\right)^{2}\right\}
$$

in which $M_{2}=$ molecular weight of solute, ν_{1}, ε_{1}, and n_{1} are the specific volume. dielectric constant, and refractive index of the solvent, respectively, at $25 \cdot 0^{\circ}, \alpha=(\mathrm{d} \varepsilon / \mathrm{d} w)_{w=0}, \nu=$ $\left(\mathrm{dn}^{2} / \mathrm{d} w\right)_{w=0}, \alpha$ and ν were determined from the equations $\alpha=\Sigma\left(\varepsilon-\varepsilon_{1}\right) / \Sigma w$ and $\nu=$ $\Sigma\left(n^{2}-n_{1}{ }^{2}\right) / \Sigma w$. Dipole moments (μ) were calculated from the equation:

$$
\mu=0.012812\left(P_{2 \infty} \times T\right)^{\frac{1}{2}}
$$

${ }^{5}$ Atkinson and Cossey, J., 1962, 1628.

- Klein and Berkowitz, J.' Amer. Chem. Soc., 1959, 81, 5160.
${ }^{7}$ Hunt, McOmie, and Sayer, J., 1959, 527.
${ }^{8}$ Atkinson and Cossey, J., 1962, 1805.

4212 Bowyer, Chatterjea, Dhoubhadel, Handford, and Whalley:

Table 2.

$100 w$	ε	$n_{\text {D }}$	$100 w$	ε	$n_{\text {D }}$	$100 w$	ε	$n_{\text {D }}$
Pyridazine			4,6-Dimethylpyrimidine-1-oxide			$3-p$-Bromophenyl-5,6-diphenyl 1,2,4-triazine		
0.0000	$2 \cdot 2720$	$1 \cdot 49800$	$0 \cdot 0000$	$2 \cdot 2718$	1-49805			
0.2138	$2 \cdot 3230$	-	$0 \cdot 1402$	$2 \cdot 2903$	-	0.0000	$2 \cdot 2721$	$1 \cdot 49802$
$0 \cdot 4082$	$2 \cdot 3675$		$0 \cdot 3346$	$2 \cdot 3163$	-	0.0723	$2 \cdot 2756$	
0.5348	-	$1 \cdot 49816$	0.5729	$2 \cdot 3476$	1-49849	$0 \cdot 1316$	$2 \cdot 2784$	
$0 \cdot 8017$	$2 \cdot 4579$	$1 \cdot 49823$	$0 \cdot 7268$	$2 \cdot 3682$	1-49861	$0 \cdot 2018$	$2 \cdot 2818$	$1 \cdot 49833$
0.9932	$2 \cdot 5025$	$1 \cdot 49829$	$0 \cdot 9469$	$2 \cdot 3972$	1-49877	$0 \cdot 2630$	$2 \cdot 2847$	1.49842
1-3877	2.5957	$1 \cdot 49839$	1•1199	$2 \cdot 4203$	1-49891	0.3536	$2 \cdot 2891$	$1 \cdot 49856$
						$0 \cdot 4355$	$2 \cdot 2930$	$1 \cdot 49868$
2,5-Dimethylpyrazine-1-oxide			3,5,6-Triphenyl-1,2,4-triazine			3,5,6-Triphenyl-1,2,4-triazine-N-oxide		
$0 \cdot 0000$	$2 \cdot 2723$	1.49805	$0 \cdot 0000$	$2 \cdot 2728$	1-49802			
$0 \cdot 2211$	$2 \cdot 2787$	--	$0 \cdot 1336$	$2 \cdot 2778$		(Compound 1)		
$0 \cdot 3750$	$2 \cdot 283$]	-	$0 \cdot 2023$	$2 \cdot 2805$	1.49829	$0 \cdot 0000$	$2 \cdot 2720$	1.49803
0.5775	$2 \cdot 2887$	1.49845	0.2611	2.2827	$1 \cdot 49836$	$0 \cdot 0716$	$2 \cdot 2758$	-
0.7578	$2 \cdot 2937$	1.49858	$0 \cdot 3337$	2.2855	$1 \cdot 49846$	$0 \cdot 1198$	$2 \cdot 2784$	-
$0 \cdot 8305$	$2 \cdot 2961$	1.49863	0.4179	$2 \cdot 2886$	$1 \cdot 49857$	$0 \cdot 1367$	$2 \cdot 2790$	1.49825
0.9170	$2 \cdot 2985$	$1 \cdot 49870$				$0 \cdot 1828$	$2 \cdot 2813$	1.49833
						$0 \cdot 2268$	$2 \cdot 2833$	1.49840
						$0 \cdot 2737$	$2 \cdot 2861$	1.49847
4,6-Dimethylpyrimidine			3-p-Chlorophenyl-5,6-diphenyl- 1,2,4-triazine			(Compound 2)		
$0 \cdot 0000$	2.2720	1.49803				0.00000	$2 \cdot 2724$	1.49803
$0 \cdot 2487$	$2 \cdot 2891$	-	$0 \cdot 00000$	$2 \cdot 2732$	$1 \cdot 49807$	0.03442	$2 \cdot 2747$	-
0.6032	$2 \cdot 3144$	-	0.02269	$2 \cdot 2744$	-	0.06423	$2 \cdot 2764$	-
$0 \cdot 6298$	$2 \cdot 3159$	$1 \cdot 49792$	$0 \cdot 04583$	$2 \cdot 2756$	-	0.09716	$2 \cdot 2783$	1.49821
$0 \cdot 8589$	$2 \cdot 3325$	1.49789	0.06872	$2 \cdot 2769$	$1 \cdot 49818$	$0 \cdot 1276$	$2 \cdot 2801$	1.49827
$1 \cdot 1190$	$2 \cdot 3510$	1.49784	0.09110	-	1.49822	$0 \cdot 1564$	$2 \cdot 2818$	1.49832
1.5319	2.3797	$1 \cdot 49777$	$0 \cdot 11436$	$2 \cdot 2793$	1.49825	$0 \cdot 2270$	$2 \cdot 2863$	1-49844
			$0 \cdot 13642$	$2 \cdot 2805$	1.49829			

Derby and District College of Technology, Kedleston Road, Derby.

[^0]: ${ }^{1}$ Katritzky, Randall, and Sutton, J., 1957, 1769.
 ${ }^{2}$ Kano, Ogato, Watanabe, and Ishizuka, Chem. Pharm. Bull., 1961, 9, 1017.
 ${ }^{3}$ Watanabe, Ogata, and Kano, Chem. Pharm. Bull., 1963, 11, 39.
 ${ }^{4}$ Marsden and Sutton, J., 1936, 599.

